Separatum

ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA Vol. XXXIII. pp. 191–194, 1953

[]

FROM THE COMMUNICABLE DISEASE CENTER, PUBLIC HEALTH SERVICE, FEDERAL SECURITY AGENCY, ATLANTA, GEORGIA, U.S.A.; STATENS SERUM-INSTITUT, COPENHAGEN (CHIEF: J. ØRSKOV, M.D.) AND THE LABORATOIRE MEDICAL, ASTRIDA (CHIEF: A. FAIN, M.D.)

TWO NEW DIPHASIC ARIZONA TYPES

By

P. R. EDWARDS, F. KAUFFMANN and A. FAIN

Received 27.iii.53

The organisms to be described were isolated in the Belgian Congo. Culture 466-52 was found in the feces of a healthy duck in Kasenyi while culture 557-52 was isolated from the intestine of a serpent (*Bitis arietans*).

Both cultures were motile rods which possessed the morphological, tinctorial, and cultural properties of the family *Enterobacteriaceae*. Both produced hydrogen sulfide, failed to form indol or to hydrolyze urea, were methyl red positive and Voges-Proskauer negative, acidified Jordan's tartrate agar, alkalinized Simmons' citrate agar, and liquefied gelatin in 10 to 14 days at 25 C. Both fermented glucose with gas formation but failed to ferment sucrose, salicin, dulcitol, or adonitol. Culture 466–52 fermented lactose with the production of gas within 48 hours, but culture 557-52 acidified lactose broth only after 11 days incubation. The biochemical reactions of the organisms were characteristic of the *Arizona* group of paracolon bacteria (*Edwards, West*, and *Bruner*, 1947).

Upon serologic examination, culture 466-52 was found to possess O antigens 1,4 of the *Arizona* group. As shown in Table 1, reciprocal agglutination to the titers of their respective sera occurred between 466-52 and the test strain of O group 1,4. Reciprocal absorption tests revealed that each culture possessed minor O antigens which were not shared by the other.

The H antigens of 466-52 were diphasic and phase 1 was agglutinated strongly by sera derived from phase 1 of culture Cal. 1141 (Arizona H 31) and from phase 1 of Salmonella poona (z). The latter two phases previously were known to possess strong reciprocal relationships (*Edwards* and *West*, 1950). Reciprocal absorption tests established the identity of phase 1 of Cal. 1141 and phase 1 of 466-52. Therefore, phase 1 of 466-52 is represented by the H symbol 31.

Phase 2 of culture 466-52 was closely related to phase 1 of Sal-

	Sera					
Antigens	Arizo	na 1,4	466-52			
	Unabsorbed	Absorbed by 466-52	Unabsorbed	Absorbed by Arizona 1.4		
Arizona 1,4 466–52	2560 2560	$\begin{array}{c} - & - \\ 160 \\ < 20 \end{array}$	640 640	$<\!$		

TABLE 1O Antigens of 466–52.

monella typhi murium (i). While cross agglutination between these two phases extended to the titers of their respective sera, minimal differences between them were apparent in absorption tests, as shown in Table 3. Since the antigens present in phase 2 of 466-52 hitherto have not been found in the Arizona group, a new symbol (33) was assigned them. Thus culture 466-52 was represented by the antigenic formula 1,4:31-33.

The O antigens of culture 557-52 were not related to any of those recognized in the Salmonella and Bethesda-Ballerup groups and possessed only a slight relationship to one of the established Arizona O groups. The cross reactions which occurred between 557-52 and the test strain of Arizona O group 5 are given in Table 4. The extent of these relationships was not sufficient to justify placing culture 557-52 in O group 5 and therefore it was assigned a new O symbol (29).

As shown in Tables 2 and 3, the H antigens of culture 557-52 were identical with those of culture 466-52 and could be denoted as 31-33. Therefore, the antigenic formula of culture 557-52 was 29: 31-33.

A list of the then known diphasic Arizona types was published by Edwards, Kauffmann, and van Oye (1952). Examination of this list reveals that previously recognized forms, like the cultures described here, frequently possess antigens in common with Salmonella types. Also, as in the present cultures, the previously described types possess combinations of antigens usually not found in Salmonella types. Often the two phases of diphasic Arizona types are related to antigens both of which occur in phase 1 of Salmonella cultures.

SUMMARY

Two new diphasic Arizona types were described. One (466-52) was isolated from the feces of a healthy duck and possessed the formula 1,4: 31-33. The second (557-52) was isolated from the intestine of a serpent and was represented by the formula 29: 31-33.

	557-52 phase 1	уд bэdтогдА 1 эгвлд 2д-994	50 50 50 50 50 50 50 50
		Араогред ру Сај. 1141 риазе 1 Сај. 1	56 ∧∧∧∧
		Арзогред ру 3. роола риззе 1 2. роола риззе	$^{1600}_{800}$
		Unabsorbed	$3200 \\ 6400 \\ 12,800 \\ 6400 $
		yd bedrozd <i>A</i> 1 esend 22-735	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	hase 1	Арзогред ру Саі, 1141 ріязе 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	466-52 p	уд bэдтогдА I эгвид впоод.2	$<50 \\ 1600 \\ 3200 \\ 1600 \\ 1600 $
ra	ra	bedrozdsnU	$\begin{array}{c} 6400\\ 12,800\\ 12,800\\ 12,800\\ 12,800\end{array}$
Š		үд рэдтогдА 1929 рразад	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	phase 1	үd bədrozdA 1 9285Q 25-994 1	20 20 20 20 20 20 20
	Cal. 1141	Арзогред ру 8. рооля руязе 1 2. рооля руязе 1	<pre><50 1600 1600 1600 1600</pre>
		Unabsorbed	3200 6400 6400 6400
		Absorbed by 1557-52 phase 1	$\begin{array}{c} 1600\\ \wedge \wedge 50\\ \wedge \wedge \wedge \end{array}$
	phase 1	уd bэdтогдА 1 эгвлд 26-994 1	$\begin{array}{c} 3200\\ 3200\\ <50\\ <50\\ <50\end{array}$
	. poona	Арзогред ру Саі, 1141 ріязе 1	$\overset{1600}{\scriptstyle \wedge 50} \times \overset{1600}{\scriptstyle \wedge 50}$
	S	bedrozdanU	12,800 3200 3200 3200 3200
		Antigens	S. poona, phase 1 Cal. 1141, phase 1 466–52, phase 1 557–52, phase 1

TABLE 2 H Antigens of phase 1 of 466–52 and 557–52.

193

	Sera								
Antigens	S. typhi murium phase 1			466-52 phase 1		557-52 phase 1			
	Unabsorbed	Absorbed by 466-52 phase 2	Absorbed by 557-52 phase 2	Unabsorbed	Absorbed by S. typhi murium phase 1	Absorbed by 557-52 phase 2	Unabsorbed	Absorbed by S.typhi murium phase 1	Absorbed by 466-52 phase 2
S. typhi murium phase 1 466–52 phase 2 557–52 phase 2	12,800 12,800 12,800	200 < 50 < 50 < 50	400 < 50 < 50	12,800 12,800 1 2 ,800	$<\!$	${<50} {<50} {<50} {<50} {<50}$	6400 6400 6400	<50 100 100	${<50} {<50} {<50} {<50} {<50}$

TABLE 3 H Antigens of phase 2 of 466-52 and 557-52.

TABLE 4O Antigens of 557–52.

Antigens	Sera					
	Arizona 5		557-52			
	Unabsorbed	Absorbed by 557-52	Unabsorbed	Absorbed by Arizona 5		
Arizona 5 557-52	640 80	320 < 20	320 2560	<20 1280		

REFERENCES

Edwards, P. R., Kauffmann, F. and van Oye, E. (1952): Acta path. et microbiol. Scand., 31, 5.

- and West, M. G. (1950): J. Inf. Dis., 87, 184.
- - and Bruner, D. W. (1947): Ky. Agr. Exp. Sta. Bul. 499.