

The impact of certification on biodiversity in smallholder coffee systems.

Ant species as indicators for diversity

Zerubabeeli Naturinda*, Ronald Muhereze* and Koen Vanderhaegen**

*Busitema University, Uganda **KU Leuven, Belgium

Outline

- Introduction
- Hypotheses
- Materials and Methodology
- Results and Discussion
- Ongoing research
- Future research and projects

Research Area

Coffea arabica L

- Perennial crop + often in agroforestry systems
- Ecosystem services
 - o Soil enrichment
 - Improved air and water quality
 - Carbon sequestration and storage
 - Biodiversity conservation

Certification

- Socio-Economic study:
 - PhD Kevin Teopista Akoyi
- Biophysical study:
 - PhD chapter Koen Vanderhaegen

Gumutindo Ltd

"ORGANIC certified"

"NON-ORGANIC certified"

Hypothesis

1. Certified coffee fields have a higher carbon stock than non-certified coffee fields.

2. Certified coffee fields conserve a higher biodiversity than non-certified coffee fields.

Hypothesis

1. Certified coffee fields have a higher carbon stock than non-certified coffee fields.

Hypothesis

2. Certified coffee fields conserve a higher biodiversity than non-certified coffee fields.

Organic certified coffee fields conserve a higher ant biodiversity than non-organic certified fields.

 Tree species composition in coffee gardens is driven by certification.

• Sampling design:

Treatment group

Stratified random sampling

• Group of farmers

- \circ Soil type
- \circ Elevation

• **Control group** Matching

- \circ Elevation
- \circ Rainfall
- Distance main road
- Distance MENP
- Age household head
- Ethnic group
- \circ Religion
- Education household head

• Entomofauna inventory (ALL protocol)

Sample processing

Sorting Mounting Labelling

Sample processing

Species Identification Digitizing

- 74 coffee gardens inventoried
 - 37 Certified, 37 Control
 - 18 Gumutindo, 19 Kyagalanyo
- 52,616 insects sorted out
- 36,716 ants grouped in morphospecies

• Species richness based on individual sample data

Based on Baits: in general, reduced species richness under certification

Method	Certified	Control	Prob > z
Baits	2.59(±1.77)	3.41(±1.62)	0.045**
Litter	3.95(±2.66)	3.49(±2.02)	0.332
Winkler	1.97(±2.39)	2.24(±1.82)	0.254
Pitfall	8.3(±3.96)	8.57(±3.8)	0.681

Average (\pm SD) amount of morphospecies counted in samples collected using 4 methods in certified and matched control coffee gardens and the probability that these averages are significantly different based on Wilcoxon matched-pairs signed-ranks test (Prob > |z|).

• But! Opposite trends expected.

• Baits (S obs)

• Baits (S obs)

	Gumutindo		Kyagalanyi	
	Certified	Control	Certified	Control
S obs	3 (±1.85)	3.67 (±1.37)	2.21 (±1.65)*	3.16 (±1.83)*
p50	2.5	3.5	2	3

Only for coffee gardens contracted with Kyagalanyi a significantly lower amount of morphospecies is observed in the bait samples (Prob > |z| = 0.0640)

• Baits (Diversity, Evenness)

	Gumutindo		Kyagalanyi	
Index	Certified	Control	Certified	Control
Η'	0.39 (±0.38)*	0.67 (±0.43)*	0.27 (±0.32)**	0.52 (±0.46)**
p50	0.23	0.78	0.15	0.57
Ep	0.3 (±0.27)**	0.54 (±0.33)**	0.24 (±0.28)	0.38 (±0.31)
p50	0.21	0.64	0.18	0.43

- Both groups of certified fields have a significantly lower Shannon Wiener species diversity.
- Gumutindo certified fields have a significantly lower (Prob > |z| = 0.0429) species evenness (E_p) compared to their matched controls.

• Winkler and Pitfall Samples

No one of the used diversity measures (S obs, S est, Total abundance, D, H, S) **indicates significant differences**.

• Also, certification is not a clear cut case...

Ongoing research

- Once species are identified => repeat tests for combined data all sampling methods
- Identify species communities
- Link communities with environmental factors
- Identify indicator species

Future research and projects

- Upscaling of ant diversity research to other LU systems (2015, 136 plots inventoried). Ants as a biotic index?
- Ant course Uganda, 2016? (contacts made with NAFORRI, Busitema U., UWA, ...).

 Digitizing of all observed species => Ant Web

Thanks to:

- GTI
- Wouter Dekonick + RBINS
- VLIR-UOS
- Busitema University
- KU Leuven
- KLIMOS
- All students and volunteers who participated