GTI symposium

Belgian National Focal Point to the Global Taxonomy Initiative

ESTABLISHING THE TAXONOMIC IDENTITY OF SWEET POTATO WEEVIL CYLAS SPECIES-COMPLEX IN SIX REGIONS IN GHANA

AGBESSENOU AYAOVI

African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana

OUTLINE

- Introduction
- Justification
- Objectives
 - Materials and Methods
 - Results
 - Perspectives

INTRODUCTION

 Sweet potato, (*Ipomoea batatas*), is one of the most important root crops in the world,

• particularly in sub-Saharan Africa where its cultivation area covers around 3 million hectares (Low and van Jaarwels, 2008).

• The commodity is highly productive with a low demand of inputs and labor.

INTRODUCTION Cont'd

- Insect pests have been recognized by farmers to be the most important constraints to sweet potato production (Ebregt et al., 2005).
- The most serious and commonly reported insect pest species in Uganda (Abidin, 2004), Kenya (Nderitu et al., 2009),

- Nigeria (Tewe et al., 2003) and Ghana (Appia-Danquah and Osei, 2013),
- are the African sweet potato weevils, *Cylas brunneus* F. and *C. puncticollis* Boheman (Coleoptera: Brentidae).

JUSTIFICATION

- Confident taxonomic separation into species has always come with its attendant problems.
- While certain species names may be predominant in some geographical regions, *C. puncticollis* and *C. brunneus* are confined to Africa (Wolfe, 1991).
- They often occur simultaneously and might both emerge from one infested storage root.
- It is speculated that, more than these two species occur in Ghana (Wolfe, 1991).

JUSTIFICATION Cont'd

- The questions that arise and most frequently asked are:
 - How many species exist in Ghana?
 - Are all the species found in all regions?
 - If not, which species are found in regions?

 However the liberal trade links between regions and continents do allow the free flow of materials across such frontiers with the possibility of different species finding their way in regions far removed from their origins.

JUSTIFICATION Cont'd

• As at now, most identification services have placed intercepted species as those found in the regions.

 Thus, it is clear that resolving the status of the two currently recognized *Cylas* species is important directly from the trade point of view,

• and also will confirm the species that are present or otherwise,

• It will add up to the numbers of conserved species.

JUSTIFICATION Cont'd

- It is in the regard that the establishment of the proper identification of these sweet potato weevils needs to be ascertained,
- so as to aid in targeting the right management strategies at the identified species.

SPECIFIC OBJECTIVES

 \checkmark Identify the species that were found in the six regions,

 Examine the genetic diversity of sweet potato weevil populations from different locations.

MATERIALS AND METHODS

• Study area

Sweet potatoes are mainly grown in the interior and coastal savanna zones, and in other parts of the country, all on a small scale.

The survey was conducted in six (6) regions in Ghana such as Volta, Central, Upper East, Eastern, Upper East and Northern regions since they are the leading sweet potato production zones (Bidzakin et al., 2014).

MATERIALS AND METHODS Cont'd

- Sampling procedure and collection of Cylas spp.
- ✓ In each of the six regions, three localities were randomly selected for trapping and collection of infested tubers by *Cylas* spp.

Figure 1: Field collection

The infested were introduced into envelopes and labeled as follows:

- date of collection,
- name of the locality and the region,
- and geographic coordinates of the locations.

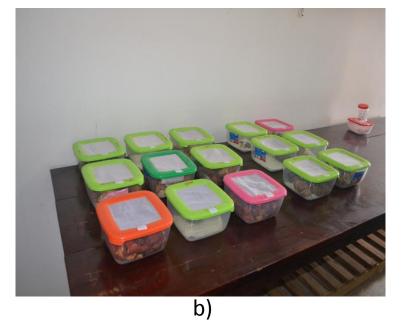


Figure 2: (a) and (b) Incubation of infested tubers

a) b) Figure 3: (a) and (b)Collection of adults from infested potatoes

✓ Sorting of Cylas spp. specimens

Table 1: Distribution and sample size of each species of Cylas spp.

Species	Ν	Distribution	Males/Females
C. formicarius	270	Central Region, Volta Region, Eastern Region and Greater Accra	140/130
C. puncticollis	194	Central Region, Volta Region, Eastern Region, Upper East and Greater Accra	99/95

MATERIALS AND METHODS Cont'd

✓ Specimens preparation for morphometric analysis

464 specimens from Volta, Central, Eastern, Greater Accra and Upper East Regions were sorted out.

5 females and 5 males per locality were measured. In all, 184 specimens were measured.

14 characters from all parts of the body of male and female specimens were measured using an occular micrometer attached to a binocular microscope.

Figure 5: Binocular microscope

Table 2: List of characters used in this study

Character	Description				
TLB	Total length of body				
LE	Length of elytra				
WE	Width of elytra				
WEA	Width of elytra at apex				
WEB	Width of elytra at base				
LH	Length of head				
WH	Width of head				
WF	Width of frons				
LR	Length of rostrum				
WRAI	Width of rostrum at antennal insertion				
LP	Length of pronotum				
WP	Width of pronotum				
WPB	Width of pronotum at base				
WPA	Width of pronotum of apex 15				

DATA ANALYSIS

• Principal component analysis (PCA) was performed, using RStudio software and SAS package.

 Two species were identified: Cylas puncticollis and Cylas formicarius

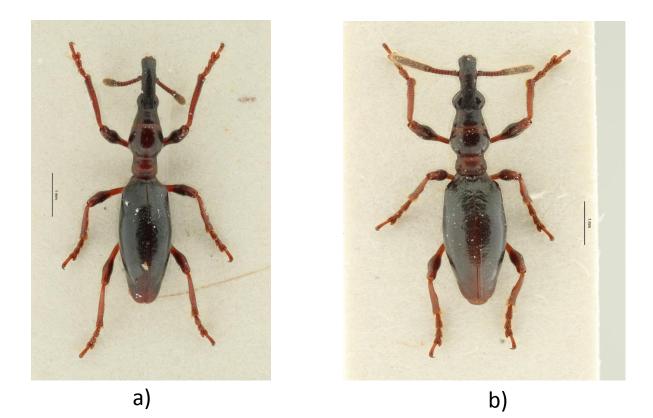


Figure 6: (a) Cylas formicarius female (b) Cylas formicarius male

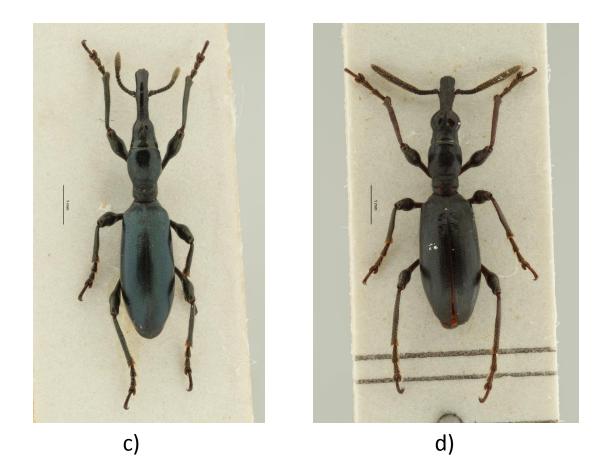


Figure 7: c) Cylas puncticollis female; d) Cylas puncticollis male

$\wedge \wedge$	Cor : 0 975	Cor 0.951	Cor : 0.76	Cor 0.474	Cor 0.353	Cor 0.947	Cor : 0.0255	Cor 0.917	Cor 0.693	Cpr 0.785	Cor 0.915	Cor 0.826	Cor 0.945
	For 0.781	For 0 652	For 0 229	For 0.158	For 0.233	For: 0.475	or0.00672	For 0.481	For 0.279	For 0.459	For 0.521	For 0 404	For 0 422
	Pun: 0.903	Pun: 0.748	Pun: 0.0805	Pun: -0 0549	Pun -0 176	Pun: 0 764	Pun: 0.451	Pun: 0 686	Pun: 0.0834	Pun: 0.748	Pun: 0.757	Pun: 0.218	Pun 0 761
in the second second	· A A	Cor 0.961	Cor : 0.776	Cor 0.495	Cor 0.358	Cor 0.938	Cor 0.0358	Cor: 0.894	Cor : 0.71	Cor 0.777	Cor 0.901	Cor 0 806	Cor 0 935
щ	11/1	-For: 0:77	For 0.334	For 0.263	For 0.185	For: 0.459	or -0-00674	For 0-402	For 0.367	For: 0.473	For: 0.54	For 0.358	For 0.454
	14 3	Pun: 0.789	Pun: 0.145	un: -0.00856	Pun: -0.128	Pun: 0.717	Pun: 0.468	Pun: 0.579	Pun: 0.14	Pun: 0.699	Pun: 0.671	Pun: 0.134	Pun: 0.693
	الميدور .	ΛΛ	Cor 0.8	Cor 0.523	Cor 0 398	Cor 0.938	Cor -0.0052	Cor : 0 868	Cor : 0.718	Cor 0.734	Cor 0.895	Cor 0.818	Cor : 0.933
₩		For: 0.334	For: 0.264	For: 0.148	For: 0.595	For: 0.0207	For: 0.383	For 0.257	For 0.469	For: 0.606	For: 0.332	For: 0.571	
Simple .		Pun: 0.244	Pun: 0.0857	Pun: 0.0163	Pun: 0 626	Pun 0.367	Pun: 0.396	Pun. 0.199	Pun 0 532	Pun: 0.61	Pun: 0 173	Pun: 0.578	
		.:	A A	Cor 0.689	Cor 0.392	Cor 0.786	Cor: -0.0889	Cor 0.7	Cor : 0.68	Cor : 0.531	Cor : 0.709	Cor 0.779	Cor 0.777
Ч			A. A	For: 0.462	For 0.216	For: 0.276	For: 0.00931	For 0.0546	For: 0.341	For: 0 0783	For: 0.297	For 0.342	For 0:264
₩			NULL	Pun: 0.581	Pun: 0.0577	Pun: 0.187	Pun: 0.0304	Pun: 0.0125	Pun: 0.203	Pun: 0.0545	Pun: 0.0583	Pun: 0.312	Pun 0.123
•				A	Cor 0.386	Cor 0.487	Cor -0.141	Cor 0.384	Cor 0.537	Cor 0.27	Cor 0.411	Cor 0.471	Cor 0.474
m				AA	For: 0.329	For 0.0965	For -0.0168	For -0.133	For: 0.43	For -0.06	For 0.0619	For -0.127	For: 0.0249
Å.				MA	Pun 0.169	Pun: 0.0163	Pun -0.116	Pun -0.159	Pun: 0.202	Pun: -0.0907	⁹ un -0.0774	Pun: 0.202	⊃un -0.0207
			1111	11.1.		Cor: 0.252	Cor : -0.301	Cor : 0.0871	Cor : 0 443	Cor 0.162	Cor : 0.098	Cor : 0.309	Cor 0.252
I	2.237	and the		111.		For -0.153	For: 0.0102	For -0.296	For: 0:299	For -0 596	For -0.3	For: -0.0136	For -0.223
	- All Adam and All All All All All All All All All Al		1111	X	Pun: -0.422	Pun: -0.369	Pun: -0.681	Pun: 0.201	Pun: -0.589	Pun: -0.547	Pun: -0.11	Pun -0.415	
	10.24	Ea	111	. 1 1	11.1.	MA	Cor 0 0274	Cor 0 932	Cor 0.682	Cor 0.801	Cor 0.941	Cor 0.831	Cor 0.98
I	CHINE .		11 11 11		. all the	11 A	For: 0.0987	For 0.501	For 0.164	For 0.549	For: 0.77	For: 0.21	For 0.854
S			.1111:	1111	-quitquei	JVV	Pun: 0.435	Pun: 0.733	Pun 0.0642	Pun: 0 804	Pun 0 827	Pun: 0 309	Pun: 0 875
			200 C				~	Cor : 0.0362	Cor : -0.0517	Cor : 0.272	Cor : 0.0737	Cor : -0.0897	Cor : 0.0181
L	to an adding	time titing			dimension of	tra.	M	or: 0.00572	For: 0.0871	For: 0:0629	For -0.0139	For: 0.0792	For 0.0393
			i .		and dependent		Pun: 0.351	Pun: 0.0505	Pun: 0.591	Pun: 0.419	Pun: 0.0177	Pun: 0.44	
									Cor : 0.613	Cor 0.829	Cor 0.913	Cor 0.785	Cor 0.924
or the second	1				 Charles 	4.0E		MAN	For 0.0567	For 0 676	For 0.544	For 0.356	For 0.49
	· · · · ······························	tout. retili		1111	anglagen al				Pun: 0.778	Pun: 0.742	Pun 0 185	Pun: 0.697	
1.180 ⁻¹	10.000	1.00°.	221772	1111	·	1000	· Hills		1.4	Cor 0.46	Cor 0.626	Cor : 0 581	Cor : 0.669
₹	Trans.	an aillin	. 111 11 .	.iiii.	Mit adilar-	A	10.000	No Fa	IT I	For 0.0544	For 0.146	For 0.117	For 0.0659
¥			: ! ! ! ! ! ! ! !	11111		5000 mm 1.5		Plate and an	North	Pun: 0 00423	Pun: 0.0539	Pun: -0.159	Pun: 0.0119
					·		· · ·	·	- W Land	A .A		Cor 0 602	Cor 0.787
0					- 建铅矾				M	Cor: 0.854	For: 0.269	For 0.558	
							14			Pun: 0.785	Pun: 0.13	Pun: 0.75	
· ···	1.41.1	11111	11.11	1.1.1	- Parter	10. T	****	25 A		2.0			
1		and the second second	1111	that strange			Lais R		Last at	$\Lambda ()$	Cor 0.781	Cor : 0.938	
	and the second			11	i	all diff.		"i-Di-			$(X \setminus$	For 0.249	For 0.757
inn i i	i a della	tunia.	1997 C		· · · · ·	100 C	- MLS	100	- idea			Pun: 0 296	Pun: 0.818
m	· · ·		in it .	111	AN AL	ni iti	La ill' : ·	1000		- 41.5		AA	Cor: 0.841
A THE	4				Jile de			AND A AND A		3		JYN	For 0.282
I will	· · ·	1.111.	:11:11	11.1	and the second			1.J.T.	13111	· Standar	· Serie	<u> </u>	Pun: 0.341
<	· · · · · · · · · · · · · · · · · · ·			111.	. all the same			1.41 M		: Phase	intritu:	, high	MM
₹		· Settion			and a sufficient		and all a			tiniti .	i illele		111
1-HHH-1		:.!!!!···		WE D		.11111		24 per	·	+ 10	. ###!***	WD D	IND A
TLB	LE	WE	WE_A	WE_B	LH	WH	WF	LR	WR_AI	LP	WP	WP_B	WP_A

- Characters that contribute to differentiate between the two species are:
- Total length of body, Length of elytra, Width of elytra, Width of head, Length of rostrum.
- Also statistical analysis revealed significant difference of characters between sex of *C. formicarius* (*p* < 0.0001) and *C. puncticollis* (*p* < 0.0001).
- but no significant difference was revealed between specimens per region (P = 0.51 and P = 0.08 for *C. formicarius* and *C. punticollis*, respectively).

PERSPECTIVES

- Subsequent measurments of specimens need to be done to increase the realability of our results,
- Examine the genetic diversity of species from different locations to check their relatedness,
- Description of sepcies found using holotype.

ACKNOWLEDGMENTS

• The programme GTI for the technical support

• Dr Wouter Dekoninck and his team

• Camille Locatelli (for pictures); Carl Vangestel for Morphometric analyses and Genetics (JEMU).

THANK YOU