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Abstract 

Light-trapping is a general term which covers all methods of attracting and/or 
capturing nocturnal insects with lamps that usually have a strong emission in the 
ultraviolet range of the spectrum, e.g. mercury vapour lamps, black light lamps or 
fluorescent tubes. Nocturnal Lepidoptera (moths), Trichoptera and 
Ephemeroptera are the insect groups which can be collected most efficiently by 
light-trapping but many nocturnal species in several other orders are rarely 
recorded with other methods, e.g. some Coleoptera. There are various light-trap 
designs in common use, but they are all based on two general construction 
types. The advantages, limitations and performances of different trap types in 
relation to target group, study area, vegetation and weather conditions are briefly 
discussed with reference to relevant literature, and general recommendations for 
operations are given.  

Keywords: monitoring, light trap design, light trap efficiency, abiotic factors, 
Lepidoptera 
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1.  Introduction 

The attraction of moths and other nocturnal insects to light is a well-known 
phenomenon and has been used for collecting nocturnal insects since the 
beginnings of scientific entomology in the 18th century. Light-trapping has 
become a general term which refers to all methods of attracting nocturnal insects 
with lamps or artificial light sources, whether they are actually connected to a trap 
or just being operated in front of walls or other reflective surfaces where incoming 
insects are then recorded or collected manually. The first purpose built devices 
which could be termed actual light-traps were used by the Romans in the 1st 
century AD (Morge, 1973; Steiner, 1991; Beavis, 1995).  

While the physiological background of the attraction to light is still under 
discussion (see e.g. Hsiao, 1972, 1973; Baker & Sadovy, 1978; Sotthibandhu & 
Baker, 1979), attracting nocturnal insects with ultraviolet light is now in general 
use and presents the most effective collecting method for nocturnal species of 
the orders Lepidoptera, Trichoptera, and Ephemeroptera, but also for many 
species of Coleoptera, Hymenoptera, Diptera, Neuroptera s.l., Orthoptera, and 
some other insect groups. Automatic light traps have also become standard 
equipment for insect pest control and pest management but will not be 
considered here further, as these devices are purely designed to kill or even 
destroy the insects attracted and thereby preclude any scientific application. 

The main advantage of light-trapping is the large number of species which can 
be recorded during a relatively short period. In Europe, for example, this can 
amount to 200 or more species of Lepidoptera in a single night under favourable 
conditions with the number of individuals running into the thousands. In the 
tropics the total count both of individuals and of species can be even much 
higher, often exceeding the available capacity for recording or collecting. On the 
other hand, light-trapping is still a selective method and not all taxa of a given 
group (family, genus) are attracted to light with the same efficiency, and females 
of many species are less attracted than males or not at all. For ecological studies 
it is sometimes seen as a drawback that light-trapping is an attraction method 
and it is thus not possible to directly link the species recorded to their respective 
(larval) habitats.  

Overall there are two main approaches in the use of light traps. The qualitative 
approach aims at maximizing record and/or catch efficiency. For faunistic 
purposes, and for inventorying or assessing larger areas, it is usually preferable 
to use high-powered lights (e.g. 125 W lamps) and to chose sampling sites for 
maximum effect and across habitat-types, such as ridge tops, forest edges, etc. 
For ecological and habitat-related studies which require standardized 
comparisons and often target habitat- or niche-specific species it is better to use 
low-powered lamps (e.g. 8 W fluorescent tubes) placed well inside the target 
habitats (Wirooks, 2005).  
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2. Lamp types 

While insects are attracted in a lesser degree to open fire, oil lamps, paraffin 
lamps, kerosene lamps and other light sources, the most effective lamps are 
those with a high emittance in the UV part of the spectrum. For most nocturnal 
insects the attractive part of the light spectrum lies in the ultraviolet range, 
somewhere between 350 nm and 550 nm (Cleve, 1954; Dufay, 1964, 1965; 
Mikkola, 1972; Hartstack, 1979) though spectral sensitivity varies from species to 
species; in a number of nocturnal Lepidoptera taxa Eguchi et al. (1982) reported 
peak sensitivities especially around 440-480 nm, and around 500-540 nm. 

For field work, however, the choice of lamp type is more often determined by the 
actual field conditions than purely by scientific considerations. If there is access 
to the electricity network or if a portable generator is available, mercury vapour 
lamps, black-light lamps or blended (mixed light) lamps are usually the best 
choice because their emittance in the UV range is higher than that of standard 
household light bulbs (tungsten bulbs). If weight and size are an issue or in field 
situations without a mains power supply, fluorescent tubes are a perfect 
alternative which can be run from rechargeable 12 V batteries. 

2.1. Mercury vapour and other UV lamps 

High pressure mercury vapour lamps come in several sizes of which the 80 W 
and 125 W versions are those most used by entomologists. A larger 250 W 
version (which is no longer manufactured) is even more effective but also more 
trying for the human eye. All of those lamps require a separate electronic ballast 
(choke) to be inserted between the lamp and the power outlet. There are also 80 
W versions which can be run without a ballast. The so-called black-light bulbs 
(125 W) produce almost no visible light; for the human eye they seem dark blue. 
They are thus suitable for situations where bright light is undesirable, e.g. in 
residential areas. For many groups, the 160 W blended (mixed light) lamps are 
less effective than the 125 W mercury vapour lamps but require no external 
ballast. There is also a 160 W black light bulb available, which does not need a 
ballast. Details can be obtained from manufacturers or from entomological 
suppliers via the internet. 

2.2. Fluorescent tubes 

The low pressure fluorescent tubes or neon tubes generally produce a bluish 
light and are available in a range of sizes in different lengths: 6 W (22.5 cm), 8 W 
(30 cm), 15 W (45 cm), 20 W (60 cm). Two special types emitting UV light are 
commonly used for light-trapping: the so-called "super actinic" tubes producing 
pale blue light, and "black light" tubes which are comparable to the black-light 
bulbs and are virtually invisible from a distance. While fluorescent tubes can also 
be operated with a voltage converter from a generator or mains power supply, in 
the field they are best directly run from 12 V rechargeable batteries. 

A number of studies have compared the relative performance of different lamp 
types and their attraction on various insect orders (Williams, 1951; Bretherton, 
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1954; Williams et al., 1955; Cleve, 1954, 1966, 1967; Lam and Stewart, 1969; 
Mikkola, 1972; Taylor and Brown, 1972; Taylor and French, 1974; Blomberg et 
al., 1976; Walker and Galbreath, 1979; Leinonen et al., 1998).  

3. Trap design   

In general, all lamps can be used without any trap or collecting vessel and 
incoming insects can be recorded or collected manually (Figs 1-5). This is often 
practised for faunistic studies and in cases when only particular species or 
specimens are of interest, especially if higher numbers of insects are likely to be 
attracted which would unnecessarily be collected by a trap or damage the 
desired specimens inside the collecting container. The lamp is best placed in 
front of a vertical white sheet, a wall or any other substrate which serves as a 
good reflector and also allows insects to settle near the lamp. Placing the lamp 
inside a larger gauze cylinder has the advantage that insects can be similarly 
attracted from all directions and that the lamp cannot be reached directly by 
incoming insects (see Figs 4 & 5). The simplest method is still to hang the lamp 
above a sheet lying on the ground 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 1. Personal light-trapping. 
The sheet method. A white 

linen sheet mounted on a 
frame of aluminium poles, with 

two battery-powered 15 W 
fluorescent tubes, one actinic, 

one black.(Photo by A. 
Steiner). 
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Fig. 2. Personal light-trapping. A 125 W mercury vapour lamp and a sheet in a tropical 
rainforest. Note necessity of rain protection. (Photo by A. Steiner). 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Personal light-trapping. A simple 
set-up: A black-light bulb in a wire-frame 

housing at the white wall of a house. 
(Photo by A. Steiner). 
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Fig. 4. Personal light-trapping. Two 
battery-powered 15 W fluorescent tubes 

in a gauze cylinder ("tower"). (Photo by A. 
Steiner). 

 

Fig. 5. Personal light-trapping. A combination of a 125 W mercury vapour lamp and two 
15 W actinic fluorescent tubes in a gauze cylinder. (Photo by A. Steiner). 
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For actual light traps, there is a variety of individual designs in use and a vast 
literature available about the subject. Most designs, however, are based on the 
following components. 

Basic features: 

� Lamp 

� Funnel 

� Collecting container or receptacle 

Additional features: 

� Rain protection for light bulb 

� Rain drainage 

� Baffles or deflector shields 

� Photoelectric switch 

� Anaesthetic or killing agent 

The lamp is the attractant. It is placed above or in front of a funnel which directs 
the insects into a collecting container, jar or receptacle. In addition, the trap can 
be provided with a range of useful features like a roof structure to protect the light 
bulb from rain and to prevent leaves, twigs, etc. from falling into the funnel. 
Alternately or additionally a rain drainage system can be installed, usually 
consisting of a small drainage funnel below the main funnel entry. A simple hole 
in the bottom of the trap collecting container covered with fine gauze is 
sometimes useful, but if a killing agent heavier than air is used the opening of the 
drainage funnel has to be raised above the bottom of the container.  

A number of deflecting shields or baffles - usually two to four - made from 
Plexiglas, plastic or metal can be arranged around the lamp so that at least the 
larger, heavier, and faster-flying specimens fall into the funnel when hitting the 
baffles while circling the lamp.  

Nowadays a photoelectric cell is an almost universal component of light traps. It 
allows the trap to be brought into the field at any time of day; the light-sensitive 
cell (the sensitivity can be regulated) switches the light on at dusk and off at 
dawn.  

An anaesthetic or killing agent is often used inside the trap container to avoid 
damage of the specimens. Chemicals like chloroform (CHCl3) or 
tetrachloroethane (1,1,2,2-tetrachloroethane, C2H2Cl4) are left to evaporate from 
a vial or small bottle by means of a wick, whereas the often used ethyl-acetate is 
much less useful as it evaporates too quickly. Note that openings at the bottom of 
the trap have to be avoided (see caution about rain drains above).   
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Special features: 

� Fan 

� Wire mesh trays for separating insects according to size 

When the trap is run without an anaesthetic it can be helpful to place a small fan 
inside the trap container to simulate wind which keeps the specimens inactive. 
Some trap designs include wire mesh or trays for automatically sorting 
specimens by size so that smaller insects reach the bottom trays and are less 
susceptible to damage by larger specimens (Common & Upton 1964; 
Vaishampayan, 1985a, b).  

 

Fig. 6. Trichoptera and Lepidoptera at a gauze cylinder (Photo by A. Steiner). 

Figures 7-8 illustrate two different trap designs. More information about specific 
designs including detailed drawings can be obtained from the literature, e.g. 
Muirhead-Thomson (1991), Fry & Waring (2001), or from individual supplier 
websites. For some examples of individual trap designs: Rothamsted light trap 
(Williams 1936, 1948; Taylor & Brown, 1972); Robinson light trap (Robinson & 
Robinson, 1950); Jermy trap (Jermy, 1961); Common trap (Common, 1960; 
Common & Upton, 1964); Heath trap (Heath, 1965). In all light traps, design 
significantly influences the catch especially with regard to the relative 
composition of different taxa, which can also be used to collect selectively 
specific target taxa (e.g., Denmark, 1964; Lam & Stewart, 1969; Farrow, 1974; 
Sutton, 1979; Intachat & Woiwod, 1999). 
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Fig. 7. A hanging light-trap without rain-
cover, showing three baffles around a 6 

W actinic tube, a collapsible funnel made 
of thick plastic film, and a bucket as 

container. (Photo by A. Steiner). 

 

 

 

 

 

 

Fig. 8. The same trap, disassembled. 
Top right: container. Right: actinic tube 

inside a Plexiglas cover with cable. The 
electronics are housed in the black top 

cap. Left: Plexiglas baffles and lower part 
of funnel. Centre: collapsible funnel with 

stabilising ring, screws for fastening 
baffles to tube housing, rubber ring for 

fastening lower part of funnel to container 
lid. (Photo by A. Steiner). 
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Fig. 9. A ground light-trap with a rain cover and three baffles around an 8 W black-light 
tube. The container is a commercially available plastic box. The black dot on the small 

grey box containing the electronics is the photoelectric cell. (Photo by A. Steiner). 

4. Distance of light-response in nocturnal insects 

In the past there was much difference of opinion about the effective range of 
attraction of light sources. More or less speculative values were given from 
around 1 m to 50 m (Daniel, 1952) or even up to 1.000 m (Koch, 1958). Various 
experimental studies – with different light sources and different study groups – 
have yielded effective distances of 3 m to 250 m (Bowden, 1982; Muirhead-
Thomson, 1991). An unresolved question is whether specimens which obviously 
came from far outside the sampling habitat were attracted directly over a great 
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distance or were on a dispersal flight and at some point entered the effective 
range of the lamp and only then became attracted (which is more probable).  

� Mark-release-recapture experiments of Sphingidae (Lepidoptera) around a 
125 W mercury vapour lamp in tropical ecosystems (Borneo) suggested 
attraction radii (for 50% return rate within 5 minutes) of generally below 30 m 
(Beck & Linsenmair, 2006).  

� Experiments with caged moths showed that a 15 W black light tube at a 
distance of 6.1 m caused 75% of Heliothis zea moths (Lepidoptera: 
Noctuidae) to move towards the light. At a distance of 69 m this response 
was shown by 10% of the moths. By extrapolation the maximal range of 
attraction was determined as 60-90 m. In Manduca sexta (Lepidoptera: 
Sphingidae) 48% of individuals showed a positive response at a distance of 
4.6 m from the light source; the maximal range of attraction was determined 
as 120-135 m (Stewart et al., 1967).  

� In a similar experimental setup the threshold of attraction was calculated to 
be 200-250 m for Spodoptera littoralis (Lepidoptera: Noctuidae) (Plaut, 1971).  

� Physiological studies on the eyes of Heliothis zea and Heliothis virescens 
(Lepidoptera: Noctuidae) showed that 15 W blacklight tubes can trigger 
sensory responses from distances between 31 m and 250 m (Agee, 1972).  

� Under the assumption that nocturnal insects react to wavelengths of 500-600 
nm, Bowden & Church (1973) calculated the radius around a 125 W mercury 
vapour lamp within which the brightness of the light source is higher than the 
background brightness. They obtained values between 35 m (in full moon 
nights) and 520 m (without moonlight). On a similar basis Dufay (1964) 
reached results of 50 m to 700 m for another type of 125 W MV lamp, while 
Nowinszky et al. (1979) calculated distances of between 20 m (full moon) and 
300 m (no moon) for a 100 W Argon bulb.  

5. The role of abiotic factors 

There is an abundant literature on the many abiotic and other factors which 
influence light trap efficiency and sample size. We can only give a basic overview 
and provide references of more detailed studies. 

5.1. Temperature 

Ambient air temperature seems to be the most important single factor influencing 
insect flight activity and thus the catch (Williams, 1940; Daniel, 1952; Hosny, 
1959; Taylor, 1963; Pulliainen, 1965; Hanna & Atries, 1969a; Persson, 1971, 
1976; Kurtze, 1974; Hanna & Hamad, 1975b; Blomberg et al., 1978; Morton et 
al., 1981; Dent & Pawar, 1988; McGeachie, 1989). Generally speaking, the 
higher the temperature the more insects are active, which usually translates into 
highest activity rates during the first hours after sunset. Rapid cooling during the 
night will cause inactivity sooner than slow cooling. In temperate climates cloud 
cover at night means less rapid cooling and thus a longer activity period of 
insects. Temperature dependency, of course, varies with the climate zone a 
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species inhabits: boreal and alpine species are adapted to lower temperatures 
than thermophilic, subtropical or tropical species, and specialist species having 
their peak activity during periods of comparatively low temperature can be found 
in all biomes, including the famous "winter moths" and "winter midges" of 
northern hemispheres.  

5.2. Moonlight and starlight 

Lunar periodicity plays an important role in catch efficiency and has been the 
subject of numerous studies (Williams, 1936; Williams & Singh, 1951; Hosny, 
1959; Dufay, 1964, 1965; Hanna & Atries, 1969b; Persson, 1971, 1976;  
Bowden, 1973, 1981, 1982, 1984; Bowden & Church 1973; Hartstack et al., 
1973; Kurtze, 1974; Bowden & Morris, 1975; Hanna & Hamad, 1975a; 
Douthwaite, 1978; Nowinszky et al., 1979;  Morton et al., 1981; Vaishamapayan 
and Verma 1982; Danthanarayana, 1986; Taylor, 1986; Dent & Pawar, 1988; 
McGeachie, 1989; Nag & Nath 1991). In short, the stronger the moonlight is, the 
less attraction a lamp has to insects. The ratio between catch in new moon nights 
and catch in full moon nights has been given as 2,67: 1 (Williams, 1940; a 4-year 
study in England) and as 2.59: 1 (Nowinszky et al., 1979; 14 years of light-
trapping in Hungary). While it was once suspected that insect activity in general 
might be lower in moon nights, it has since been shown that lamp attraction is 
weaker. In fact insect activity seems to be higher in bright, moonlit nights as 
indicated by comparisons of light-trapping with other methods such as suction 
traps (Bowden, 1981) and pheromone traps (Dent & Pawar, 1988). When insect 
activity actually diminishes in moon nights this is usually due to other negative 
weather factors, especially rapidly falling temperatures as commonly observed in 
clear nights. In subarctic regions, however, the naturally bright summer nights 
make lamps less attractive to insects (Blomberg et al., 1978). 

The relationship of background brightness (light emitted by moon and stars) and 
catch efficiency has been expressed in the formula: 

 

where W represents lamp brightness and I is background brightness. With a 
constant lamp brightness there is: 

 

Other weather factors can significantly influence this ratio (Bowden & Church, 
1973; Bowden, 1981, 1982), while cloud cover mitigates the competing effects of 
moon light.  

5.3. Wind 

Wind speed is another important factor affecting insect activity and especially 
flight (Hosny, 1955, 1959; Williams, 1961; Dufay, 1964, 1965; Brown, 1970; 
Persson, 1971, 1976; Kurtze, 1974; Hanna & Hamad, 1975b; Douthwaite, 1978; 
Morton et al., 1981; Tucker, 1983; Dent & Pawar, 1988; McGeachie, 1989). In 
stronger wind there is less insect activity: most species cease flying as soon as 
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they cannot any longer maintain a directional flight. The critical wind speed varies 
according to size and strength: larger moths (Noctuidae) cease flying to lamps at 
wind speeds of 10.8-13.8 m/s, smaller Diptera, Tipulidae, Limnobiidae, and 
Chironomidae at 8.0-10.7 m/s, Psychodidae and Trichoceridae at 6.7-9.4 m/s, 
and Ceratopogonidae and Cecidomyiidae at 3.4-5.4 m/s (Kurtze, 1974). A 
marked reduction of catch occurs at 3-4 m/s (Douthwaite, 1978) and at 4 m/s 
(Dent & Pawar, 1988). The highest catch rates, however, are not recorded at 
calm but at wind speeds between 1 and 3 m/s (Hosny, 1955; Douthwaite, 1978; 
Dent & Pawar 1988).  

5.4. Precipitation, air humidity, and fog 

Strong rainfall can reduce or prevent insect activity, especially for smaller 
species, while most insects are usually indifferent to light rain (drizzle, spray) 
unless it coincides with a drop in ambient temperature. Under certain conditions, 
e.g. in dry or semiarid areas but also in tropical regions with a pronounced rainfall 
seasonality, rain can induce eclosion and stimulate activity (Williams, 1940; 
Daniel, 1952; Hosny, 1955, 1959; Pulliainen, 1965; Harling, 1968; Brown et al., 
1969; Persson, 1971; Kurtze, 1974; Douthwaite, 1978; Tucker, 1983). In the 
tropics rain often considerably increases light trap attractivity, often leading to 
unusual and rare records. For running a light during tropical rain, the lamp or trap 
is best protected by a larger roof, which can be easily constructed with some 
canvas or tarpaulin (Malicky, 2002; see also Fig. 2). In addition, some drainage 
provisions around the position of the trap are often a helpful measure (e.g., Diehl, 
2001).  

In temperate conditions, high air humidity can also promote insect activity unless 
combined with cooling. Fog in combination with falling temperatures or fog which 
forms in valley bottoms, basins, and wetlands, strongly reduces insect activity. 
Dewfall is usually a result of cooling and coincides with reduced activity. Drifting 
clouds and fog on slopes or in the mountains need not to lead to negative results; 
in certain situations they actually seem to intensify the attraction of light traps 
(Daniel, 1952; Hosny, 1955, 1959; Hanna & Atries, 1969a; Kurtze, 1974; Hanna 
& Hamad, 1975b; Esche, 1992). 

5.5. Air pressure 

It is sometimes said that falling air pressure improves general insect activity, e.g. 
before thunderstorms (Haase, 1929; Allan, 1947; Hosny, 1955; Lederer, 1959) 
while other studies claim there is no recognisable influence of air pressure 
(Dufay, 1964, 1965). Without quantitative studies or experimental evidence at 
hand, however, we also have experienced many times the highest attraction of 
light traps at times just before the onset of thunderstorms or heavy rainfall, both 
in temperate and especially under tropical conditions; whether it is specifically air 
pressure or other factors related to the imminent change of weather conditions 
which lead to high levels of insect activity remains unclear, but such situations 
are usually always advantageous for light-trapping. 
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In addition to climate and weather related factors, several locality-related 
conditions also play an important role in determining the most productive sites for 
light traps. 

Forest vs. open country 

Inside forests the negative effect of moonlight is less dramatic. Bowden (1982) 
studying trapping data from Rothamsted (England, U.K.) noted a catch ratio of 
Noctua pronuba (Lepidoptera: Noctuidae) between open habitats and forests of 1 
: 3.7. Temperature change, especially nocturnal cooling is often less marked in 
forests, and winds are weaker. On the other hand light has a larger radius in 
open areas (Hosny 1955, 1959; Bowden, 1982), and results are significantly 
different between light traps placed in the understorey and in the forest canopy, 
especially in the tropics (Schulze et al., 2001; Beck & Linsenmair, 2006).  

Wind direction 

Most insects prefer to fly against the wind when looking for food or locating 
females. Exceptions are migrating specimens which use wind currents and fly 
with the wind (Brown et al., 1969; Brown, 1970). When smaller areas are to be 
studied it is thus advantageous to place traps at their windward side.  

Terrain structure and landscape 

Many insects prefer to fly upslope, also at night. Lights placed on slopes or 
hilltops may control a larger area; even considering that a lamp's direct effective 
range of attraction may be quite small, there is a higher chance that more 
specimens reach the neighbourhood of the trap. The landscape (and vegetation) 
surroundings of the light trap location also greatly influence the results, e.g. by 
offering protection from or providing exposure to local wind currents and other 
weather factors, and through different local microclimatic conditions, including 
varying albedo properties. Cold air often accumulates in even small depressions 
and valley bottoms, while certain terrain structures such as bare rocks can 
absorb heat during the day and emit part of that radiation at night. Selecting the 
exact placement of a light trap should also take these factors into account. 

6. Concluding remarks  

For any new light-trapping project, the choice of the equipment to be used is 
clearly an important initial step. Aside from the relevant technical and biological 
parameters that different lamps and trap constructions entail, the final choice 
should also consider more practical criteria, such as weight and transportability, 
durability under field conditions, and availability and cost of spare parts or 
repairs. It should be kept in mind that there exists no overall most effective or 
"best" lamp type nor "standard" light trap construction or design; all types and 
makes of light traps are differently selective in one way or another, and the final 
choice should be determined by the exact question(s) and goals to be pursued 
by the study. Although most equipment discussed here works well for most insect 
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taxa and many different habitats, no one type of light trap will equally attract all 
taxa. For aiming at a comprehensive inventory such as an ATBI of a local fauna 
or a community of different taxa, it is therefore advisable to employ a number of 
different lights and trap designs, if at all possible. 

With standardization of methods being a requirement for many scientific 
approaches in order to allow for comparable and/or repeatable collection of data, 
especially from ecology, light-trapping provides a clear method of choice for 
many entomological studies. While standardization can be easily achieved for the 
equipment and light-trapping regime, other factors relevant for the results are 
much more difficult to compare or even standardize, even if the availability of fully 
automatic light traps allows reducing the influence of the "human factor" to a 
certain degree. Apart from the important effects of weather, moonlight and other 
factors discussed above, the exact placement of a trap in the field remains the 
overall most difficult and perhaps still influential parameter in making light- 
trapping data fully comparable, especially for highly structured habitats and 
landscapes such as forests and mountains. As indicated above and experienced 
many times, the precise placement of the light in relation to its surroundings 
greatly impacts the results, with sometimes a few feet or meters distance already 
leading to noticeably different catches. Especially for manually operated lights, 
finding the "best" precise location is almost always the biggest challenge in the 
field, for which personal experience often still provides the best guidance. All 
these methodological challenges should provide additional incentives for the 
precise recording and documenting any light-trapping session, especially for 
exact geographic coordinates, time, and weather conditions, which should be a 
common standard under all light-trapping circumstances. 

7.  Tips and hints – some "do-s and don't-s" 

� The higher a lamp/trap is placed above the ground, the larger is the area it 
controls. Be sure to have sufficient possibilities to raise the light and/or trap 
above ground on site (e.g., by carrying poles or other equipment). 

� Stronger light generally means higher attraction (more specimens/species), 
but some species prefer to settle at some distance from bright lamps. It is 
often helpful to carefully check the perimeter around such a lamp to find 
those species.  

� Small moths and other insects with a gentle flight often come to rest on the 
baffles of a trap or in the vegetation nearby and do not enter the collecting 
container. Traps should therefore be checked well before sunrise, before 
these specimens fly away or are eaten by birds and other predators. It is 
helpful to place the trap on a large white sheet or a similar background that 
makes it easier to find those specimens.  

� Before placing light traps for longer-term studies in the field, check and 
record the microclimatic conditions at night at the exact location, particularly 
with regard to air temperature, wind strength, and wind direction.  

� When using a trap without a killing agent, the container needs to be filled with 
materials to provide sufficient resting space for the specimens. Many authors 
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recommend using egg cartons, which however we find very difficult to extract 
resting specimens from. Instead, we recommend using rough, slightly 
crumpled paper, because this is easier to handle and can be more readily 
straightened to box specimens.  

� When running light traps with a killing agent especially for specific, limited 
questions, try to ensure that the by-catch is also kept for / used by other 
researchers; all specimens collected with accurate data can be of value! 

� Do not look directly into a mercury vapour lamp. Although the UV radiation 
from MV lamps is considered not harmful for the human eye, individual 
sensitivity varies and emission from strong MV lamps can be irritating. 

� When going into the field, always carry sufficient torches and other additional 
light sources along; if for no other reason, setting up and taking down light 
trap equipment at night can be quite difficult without sufficient torches at 
hand. 

� Always take some basic tool kit (screwdriver, pincer, small knife, electrical 
tape) along when light-trapping; equipment gets easily damaged under field 
conditions, and it is advantageous to be able to do basic repairs on site. 
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